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Abstract

Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is
unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may
help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates
developmental systems theorists’ focus on dynamics and contingency with the ‘design stance’ of evolutionary psychology. It
provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural
selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach.

Research highlights

• This paper introduces developmental psychologists to
dynamic optimization, a method that has generated
much interesting work in biology.

• Dynamic optimization can help bridge the current
divide between developmental systems theory and
evolutionary psychology.

• Dynamic optimization can be used to explore the
properties of developmental systems that natural
selection might favor depending on environment.

• Dynamic optimization provides an integrative theo-
retical framework as well as a set of tools.

Introduction

Evolution is the control of development by ecology. (Leigh
van Valen, 1973)

Developmental systems theorists and evolutionary
psychologists interact less than they should, and when

they do, these interactions tend to be antagonistic
(Lickliter & Honeycutt, 2003a, 2003b, 2003c; and
commentaries by Buss & Reeve, 2003; Crawford, 2003;
Krebs, 2003; Tooby, Cosmides & Barrett, 2003). There
have, of course, been both points of agreement (Badcock,
2012; Barrett, 2006, 2007; Bjorklund, 2003; Bjorklund,
Ellis & Rosenberg, 2007; Ploeger, van der Maas &
Raijmakers, 2008) and disagreement (Dennett, 2011;
Sterelny & Griffiths, 1999). Where the sides seem to
differ is in explanatory focus. Developmental systems
theorists accuse evolutionary psychologists of under-
playing the role of developmental causation in building
phenotypes (i.e. genetic determinism). Evolutionary
psychologists, on the other hand, claim that develop-
mental systems theorists underplay the role of natural
selection in organizing development (i.e. unconstrained
holism), resulting in a lack of ability to predict species-
typical cognition and behavior (Bjorklund et al., 2007).
Each ‘camp’ perceives the other’s criticism to be unfair.
The current stalemate is unfortunate because potential

synergies between the two fields remain unexplored. These
synergies can be built on the assumption, shared by both
approaches, that developmental systems are the central
units of evolution (Barrett, 2006, 2007; Johnston & Turvey,
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1980; West & King, 1987; West-Eberhard, 2003). This
assumption is justified by the fact that all phenotypes are
products of developmental processes. Thus evolutionary
processes, including natural selection, alter phenotypes by
modifying developmental systems – the array of processes
that construct organisms, including genes, gene regulatory
systems, and other factors (Barrett, 2007; Finlay, 2007;
Griffiths & Gray, 2005). This idea has always been central
to developmental systems theory (Gottlieb, 1991; Lickliter,
2008; Oyama, Griffiths & Gray, 2001; Lickliter & Honey-
cutt 2003a, 2003c), and has more recently been incorpo-
rated by some evolutionary psychologists (Barrett, 2006,
2007;Bjorklund et al., 2007;Frankenhuis&Panchanathan,
2011a, 2011b; see alsoTooby&Cosmides, 1992, pp. 77–93).
This point of agreement provides an important scaffold for
the integration proposed here.

We hope to show that one approach, called dynamic
optimization (Houston & McNamara, 1999; Hutchinson
& McNamara, 2000; Mangel & Clark, 1988), has the
potential to help forge a constructive bridge. This
approach integrates developmental systems theorists’
focus on dynamics and contingency with the ‘design
stance’ of evolutionary psychology. In addition, it
provides a set of tools for analyzing the properties of
developmental systems that natural selection might
favor, given particular evolutionary ecologies.1

We recognize that developmental systems theory is not
a single theory, but rather a theoretical perspective that
encompasses a family of related ideas (Robert, Hall &
Olson, 2001). For instance, developmental systems theo-
rists agree that organisms inherit not only genes, but
instead an entire developmental matrix; however, what
elements comprise this matrix, and their relative impor-
tance (e.g. genes vs. other developmental resources), are
debated (Rossiter, 1996; Sterelny, Smith & Dickison,
1996; Griesemer, Haber, Yamashita &Gannett, 2005). We
distinguish between a ‘hard’ and a ‘soft’ version of
developmental systems theory. The ‘hard’ version main-
tains that natural selection acts on the replication of entire
organism-environment wholes, which comprise every
repeatable influence that contributes to the construction
of organisms anew each generation. These repeatable
influences include not only factors encompassed within
the organism’s bodily envelope (e.g. genes, gene regula-
tory systems, etc.), but also factors outside it (e.g. social

and bio-geographical factors), which mainstream biology
regards as part of the ‘external environment’. Whether
this ‘hard’ version can be integrated with dynamic
optimization, and whether doing so would be productive,
are open questions that we leave for a future study.

In this article, we consider a ‘soft’ version of develop-
mental systems theory. Like the ‘hard’ version, the ‘soft’
version includes a focus on context, dynamics, contingency,
and incremental development. Unlike the ‘hard’ version,
the ‘soft’ version views organisms as separate from their
environments and natural selection as maximizing the
fitness of developing organisms (not of entire organism-
environment wholes). What we mean by ‘separate’ is not
that organisms are independent of their environments;
indeed, organisms are always embedded in their environ-
ments. Instead, what we mean is that the properties of
organisms and the properties of environments can be
treated as distinct components in an evolutionary model,
despite being causally related. Thus, in what follows, we
treat ‘developmental systems’ as synonymous with ‘devel-
oping organisms’, dynamic entities comprising genetic,
molecular, and cellular interactions at multiple levels,
which are shaped by their external environments, but
distinct from them. We acknowledge that some develop-
mental systems theoristswould reject this ‘soft’ version.We
note, however, that our approach can incorporate bi-
directional relations between organisms and their environ-
ments; i.e. developing organisms are not only shaped by
their environments, but also reciprocally shape their own
environments. We do not discuss such ‘niche-construction’
in detail (see Flynn, Laland, Kendal & Kendal, 2013;
Laland & Sterelny, 2006; Laland, Sterelny, Odling-Smee,
Hoppitt & Uller, 2011), but the dynamic optimization
approach presented here can accommodate it.

Dynamic optimization is not a novel approach; it is
commonly used in mathematics, economics, engineering,
biology, and more recently in cognitive neuroscience
(Busemeyer & Pleskac, 2009; Chhabra & Jacobs, 2006;
Drugowitsch, Moreno-Bote, Churchland, Shadlen &
Pouget, 2012), clinical psychology (Moodie, Richardson
& Stephens, 2007; Murphy, 2003), and the study of
sensorimotor control (Engelbrecht, Berthier & O’Sulli-
van, 2003; see also K€ording & Wolpert, 2006; Todorov,
2004). However, the approach is rarely employed in
developmental psychology. Here, we hope to show that
dynamic optimization offers a fruitful bridge between
evolutionary and developmental psychology.

Natural selection as optimization

In biology, the morphology, physiology, and behavior
of plants and animals is often analyzed from an

1 Evolutionary ecologies, in this context, are not a particular historical
place or time, but rather the statistical composite of selection pressures
that caused the design of an adaptation across generations (Tooby &
Cosmides, 1992). Developmental ecologies exist on within-generation
timescales (and are thus nested within evolutionary ecologies), and are
those environments experienced by an adaptation between its concep-
tion and death.
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optimization perspective (Fawcett, Hamblin &Giraldeau,
2013; Gardner, 2009; Grafen, 1984; Maynard Smith,
1978; Mayr, 1983). Optimization theories presume that
there is a fit between the design of phenotypes and the
adaptive problems they solve, where ‘optimality’ typi-
cally means optimality under constraint (i.e. natural
selection does not produce perfect solutions, but selects
among the best available ones). In this sense, for
example, the wings of various bird species are optimized
for the problems of flight that they face. Hummingbird
wings are tailored for maneuverability, vultures’ for
soaring, and gannets’ for diving at extremely high speeds
(over 60 mph), enabling them to catch fish much deeper
than most airborne birds. In each case, the process of
natural selection has shaped these phenotypes to fulfill
specific adaptive functions.
Developmental systems theorists object to viewing

natural selection as a ‘designing force’ (Lickliter, 2008;
Lickliter & Honeycutt, 2003a), because the process has
no agency – no intentions or foresight. It is true, of
course, that natural selection is a process without agency,
as recognized by Darwin himself (indeed, the lack of
agency was precisely what made his theory controver-
sial). No modern-day biologist would attribute agency to
natural selection. However, adaptations can have the
‘appearance of design’ (Williams, 1966), and their
component parts can be understood, and in some cases
predicted, with reference to their adaptive function
(Gardner, 2009; see Grafen, 2007, for a formal justifica-
tion of studying organisms as optimized by natural
selection). For instance, functional considerations helped
William Harvey discover that blood circulates through
the body, rather than being consumed by organs, and
that the heart functions as a pump (Mayr, 1983). We
believe this particular disagreement is mostly about
semantics, as long as both ‘camps’ agree on how natural
selection actually works: it is the selective retention of
inherited variations, with ‘variations’ referring not to
genes alone, but to entire developmental systems
(including genes, gene regulatory systems, etc.).
In ‘design’ language, we may suppose that natural

selection favors developmental systems that tend to
construct adult phenotypes that are successful, relative
to other variants, at surviving and reproducing (Barrett,
2006, 2007; Geary, 2006; Geary & Bjorklund, 2000). In
this sense, the properties of developmental systems will
reflect, in terms of a form–function fit, the selection
pressures that created them – in the same way that ever-
faster running speed in gazelles reflects the enduring
challenge of escaping mobile predators. Our approach,
therefore, will be to analyze developmental systems
through the lens of an engineer, focusing on the adaptive
problems they solve for developing organisms.

There are many different ways to implement an
engineering analysis (for examples, see de Beer, 2000;
Frank, 1996; Osman, 2010). However, at a general level,
what is required is a hypothesis regarding the problem
that the system solves, the environments in which the
system was designed to solve the problem, a specification
of the features that the system brings to bear in solving
the problem, a description of how the properties of the
system and the properties of the environment interact to
produce outcomes, and an analysis of how well the
system performs in terms of its target solutions (John-
ston & Turvey, 1980; Marr, 1982; Tooby & Cosmides,
1992). Here, we hope to show that dynamic optimization
provides one (although not the only) suitable framework
for modeling evolved developmental systems.
Dynamic optimization belongs to a broader class of

optimization approaches (Maynard Smith, 1978). All
these models share certain assumptions, but each has
some unique features, which are useful for particular
purposes. We focus on dynamic optimization because
this approach is suitable for examining what kinds of
dynamical systems natural selection might favor, given
particular evolutionary ecologies. It allows us to ask such
interesting questions as: When does natural selection
favor developmental mechanisms that use properties of
the external environment to guide development? How
does this sensitivity depend on the reliability of these
properties being present? And how does it depend on the
system’s prior probability of developing within specific
environmental conditions?
Our treatment will be primarily conceptual, but we

also include brief discussions of how dynamic models
can be implemented mathematically (Sections 3 and 4)
and through computer simulation (Section 6). We
provide references here (Houston, Clark, McNamara &
Mangel, 1988; Mangel & Clark, 1988; Houston &
McNamara, 1992, 1999; Mangel & Ludwig, 1992), and
elsewhere in the paper, for readers seeking more infor-
mation.

Static optimization

Before discussing dynamic optimization, we first discuss
static optimization. Static optimization is useful when
organisms make only a single ‘decision’, or multiple
decisions that are independent of each other, so that
previous decisions do not constrain future options. For
example, an organism might make a single ‘decision’ to
invest in growth or reproduction, to develop a particular
level of vigilance, to stay or migrate, etc. Because static
optimization does not model the changing state of the
organism, it is not suitable for analyzing dynamical
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aspects of developmental systems. Nonetheless, the
method can generate insights that are useful to develop-
mental psychologists. Let us consider an example.

Developmental plasticity refers to the ability of a
developmental system to produce different phenotypes
depending on the environment in which it develops (e.g.
resulting from experience-dependent systems interacting
with local ecologies; Greenough, Black &Wallace, 1987).
Many psychologists are aware that capacities for devel-
opmental plasticity tend to evolve in environments that
are variable across evolutionary time. However, it is less
well known that different kinds of environmental vari-
ation may result in very different adaptations. In certain
cases, static optimization can illuminate why.

One pivotal distinction is between spatial and tempo-
ral environmental variation.2 In spatially varying envi-
ronments, the environment is broken up spatially into
different patches (like a mosaic), each with a particular
state (e.g. in the simplest possible example, two states,
safe or dangerous). Within a given generation, offspring
may be born into either kind of patch; however, across
generations, organisms always face the same spatial
distribution. In spatially varying environments, parents’
fitness can be computed by taking the arithmetic mean
of the fitness of all their offspring;3 that is, the fraction of
offspring in patch A multiplied by their fitness, plus the
fraction of offspring in patch B multiplied by their
fitness, and so forth. This implies that even if some
offspring attain low fitness (e.g. they die), parents’ fitness
need not suffer greatly, as long as their other offspring
attain high fitness.

Now consider temporal variation. In a temporally
varying environment, all offspring within a generation
are born into the same environmental state (e.g. safe);
however, in the next generation, all individuals may be
born in a different environmental state (e.g. dangerous).
In a temporally varying environment, the entire popu-
lation experiences variation across generations. In such
environments, long-term fitness depends on the fitness of
the lineage in generation 1, multiplied by the fitness in
generation 2, and so forth. The average fitness of this
series will not be their arithmetic mean, but their
multiplicative, or geometric, mean – the n-th root of
the product of n fitness values (Dempster, 1955). With
this knowledge, we can develop a simple static optimi-
zation model showing that spatial and temporal varia-
tion may result in different adaptations.

Imagine two developmental systems (DS 1 and DS 2)
that are exposed to two environmental states (E1 and
E2), with equal probability (50%). Suppose that DS 1
constructs a similar phenotype in E1 and E2, which is
highly fecund in E1, producing as many as nine
offspring, but unproductive in E2, producing only one
offspring. In contrast, DS 2 is plastic, producing
different phenotypes in E1 and E2, each quite well
matched to its environmental state. DS 2 performs worse
than DS 1 in E1, but better than DS 1 in E2; say, four
offspring in each environment. Which is favored when?
In a spatially varying environment, DS 1 attains higher
fitness than DS 2, because its arithmetic mean is greater:
(9 + 1)/2 > (4 + 4)/2 = 5 > 4. However, in a temporally
varying environment, the geometric mean of DS 2 is
greater: √(9 9 1) < √(4 9 4) = 3 < 4.

Thus, spatial and temporal environmental variation
may result in different adaptations, because they entail
different fitness calculations. In particular, temporal
variation more often selects for risk-averse strategies,
because instances of low fitness have multiplicative
(geometric) effects (Philippi & Seger, 1989). We just
observed that parents might reduce temporal variance in
fitness by producing plastic offspring – this is called
‘conservative bet-hedging’, because it avoids extremes. A
second way in which parents can reduce fitness variance
is by producing phenotypically variable offspring. This
strategy of ‘diversified bet-hedging’ ensures that at least
a fraction of offspring will be well adapted to the next
generation, whatever its state (Childs, Metcalf & Rees,
2010). Indeed, Belsky and Pluess (2009) hypothesized
that individual differences in plasticity in humans may be
the result of parents hedging their bets.

Formal models (Philippi & Seger, 1989) and empirical
research on plants and animals (Childs et al., 2010) show
that temporal variation leads to selection for bet hedging
when fitness effects – i.e. the effects of the focal trait on
the organism’s overall fitness – are large. This is because
greater variance in fitness implies lower geometric mean
fitness, increasing the benefits of reducing this fitness
variance by producing variable offspring. Static optimi-
zation models thus suggest novel avenues for testing the
‘diversified bet-hedging’ hypothesis of differential plas-
ticity (Belsky & Pluess, 2009): we should expect large
differences in fitness between low- and high-plasticity
individuals in a given environment (Frankenhuis, Pan-
chanathan & Belsky, in preparation).4 This prediction
remains to be tested in humans.

2 Some authors use the terms individual level and population level to
distinguish these two kinds of environmental variation.
3 We assume that generations are non-overlapping: organisms are born;
develop; reproduce; mature individuals die, and the cycle repeats.
Parents and offspring do not coexist.

4 This prediction assumes that current environments have similar
fitness-relevant properties to the ecologies (EEA, environments of
evolutionary adaptedness) in which the relevant mechanisms evolved
(i.e. no evolutionary disequilibrium).
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Dynamic optimization

Development, by definition, involves change over time.
These changes cannot be captured within the framework
of static optimization, but they can be modeled using
dynamic optimization. The goal of dynamic optimiza-
tion is similar to that of dynamical systems theory: to
understand how a system changes over time depending
on interactions between its internal state and external
influences (van der Maas, 1995; De Beer, 2000; Smith &
Thelen, 2003). However, dynamic optimization specifi-
cally aims to find the best course of action for each
possible state of the system (the optimal policy; Houston
& McNamara, 1999; or in game theory, the optimal
strategy; Maynard Smith, 1982). In our case, we want to
determine optimal (i.e. fitness-maximizing) developmen-
tal ‘decisions’,5 which, combined, form optimal devel-
opmental trajectories.
In dynamic models, developing organisms are repre-

sented by a set of state variables. State variables are
quantities that describe the state of the system and that
are sufficient to predict its state, if only probabilistically,
at future times. State variables can represent factors
internal to the organism (e.g. energy, knowledge, skill) or
external to it (e.g. the distribution of resources in the
environment). Each state variable takes on a specific
value (e.g. energy = 4, knowledge = 6; skill = 9), which
might change over time, and the complete set of values
describes the ‘state’ of the organism.
If we know the organism’s state and the policy it

follows, then we can predict its decisions, but not
necessarily its next state because decisions may be
probabilistically (rather than deterministically) linked
to outcomes. For instance, if an animal chooses to
forage, it may or may not find a resource, and so its
energy may be replenished or depleted in the next period.
Thus, policies should be viewed as instructions (‘go
forage’), not as outcomes (‘finding a resource’). Dynam-
ical systems are called stochastic when the same decision
may lead to more than one outcome, and deterministic
when the state resulting from a decision is certain. If
future states result stochastically from decisions, the
payoff of these future states should be weighted by their
probability (i.e. ‘expected payoffs’).
We will now provide an example of dynamic optimi-

zation. Although our example is simple, it captures an
important tradeoff that many organisms (including
humans) face, between growth and reproduction. All
else being equal, organisms with higher fecundity should

be favored by natural selection. However, individuals
who begin reproducing early in life may experience costs
to fitness, including reduced growth and development
(for evidence in humans, see Helle, 2008). Precisely how
organisms should optimally allocate resources to growth
and development, versus allocating them to reproduc-
tion, will depend on the nature of this tradeoff, which is
in turn influenced by features of the environment.
One factor that has been linked to faster maturation

and earlier reproduction in humans and other animals is
the rate of extrinsicmortality (Belsky, Steinberg&Draper,
1991; Chisholm, 1993; Frankenhuis & Del Giudice, 2012)
- the risk of dying due to factors outside of one’s own
control, such as predation, accidents, disease, etc. (Ellis,
Figueredo, Brumbach & Schlomer, 2009; Griskevicius,
Delton, Robertson & Tybur, 2011). In humans, higher
rates of extrinsic mortality predict earlier onset of
menarche, earlier age of first sex, and earlier production
of first offspring (Ellis, 2004; Walker, Gurven, Hill,
Migliano, Chagnon, De Souza, Djurovic, Hames, Hurta-
do, Kaplan, Kramer, Oliver, Valeggia & Yamauchi, 2006).
We can formulate a dynamic model linking extrinsic

mortality to the growth–reproduction tradeoff. Consider
a female that lives for three years. In each year, she has
two options: investing in growth or reproduction. During
each year, she faces some fixed probability of surviving
(s), which we assume to be independent of the develop-
mental decision to grow or reproduce. Females who
reproduce earlier sacrifice some of their own growth,
hence have smaller bodies (Helle, 2008); as a result, they
have fewer physical resources to invest in each offspring,
and so these have lower viability (e.g. an increased risk of
juvenile mortality) compared with offspring of mothers
who developed a larger body. We capture this idea as
follows: Each offspring yields 1–c1+n to the parent – with
c denoting the reduction in offspring viability (ranging
between 0 and 1), and n denoting the number of time
periods a parent has invested in her own growth. Thus, a
parent who invested zero, one, and two periods in her
own growth garners, respectively, 1–c, 1–c2, 1–c3 for a
given offspring. How should natural selection shape
reproductive trajectories, depending on parents’ survival
probability (s) and juvenile mortality (c) (see Figure 1,
for a graphical representation of the decision tree)?
To calculate the payoffs of different developmental

trajectories we use a technique called backwards induc-
tion. Backwards induction helps resolve problems of
combinatorial explosion that can arise with an exhaustive
search, if every decision (and so all developmental
trajectories) were to be explored. This is not a concern in
models with low dimensionality, like the current example,
but it quickly becomes a major issue when more variables
and/or time periods are included (Kokko, 2007; Roff,

5 We use the term ‘decisions’ metaphorically: ontogeny results from
mechanistic processes, which need not be conscious or intentional.
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2010). Instead of moving forward through the state space,
exploring every possibility for every state, this technique
begins at the final time period and moves backwards,
pruning the suboptimal branches (i.e. choices resulting in
lower fitness), thus reducing the search space. Backwards
induction does not imply that evolutionworks backwards;
a complete forward search (e.g. via genetic algorithms)
would yield the same answer. Nor does it imply that
developmental processes can only be understood retro-

spectively. Rather, oncewe know the optimal policy (either
through forward or backward search), we can make
prospective predictions about howdevelopmental systems
will respond – both in terms of state change and
behavioral response – to impinging influences.

We begin by determining the fitness associated with
each of the end states. The current model has eight end
states (Figure 1a). Four of these denote growing in the
final period, and the other four reproducing. The payoff
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Figure 1 A schematic representation of a tradeoff developing organisms may face between investments in their own growth versus
earlier reproduction. The model has eight end states (Figure 1a). In all four penultimate states, individuals should choose to
reproduce. Hence, we eliminate the ‘growth’ trajectory emanating from each penultimate state (Figure 1b), and assign to it the
expected optimal payoff associated with having reached that state, which equals the sum of the current payoff plus the expected gain
given making the optimal decision (Figure 1c). In the antepenultimate period, there are two states, and in each of these, irrespective
of the values of c and s, the optimal decision is to reproduce. Hence, we eliminate the ‘growth’ option emanating from them
(Figure 1d), and assign to it the expected optimal payoff associated with having reached that state (Figure 1e). In the starting state,
the optimal decision will depend on the values of c and s.
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associated with attaining an increment of growth in the
final period is zero (i.e. no offspring are produced, and
investments cannot be cashed out later); hence, in all
four penultimate states, individuals should choose to
reproduce (1–c1+n > 0) (decision 3). Therefore, we can
eliminate the ‘growth’ trajectory emanating from each
penultimate state (Figure 1b), and assign to each penul-
timate state the expected optimal payoff associated with
having reached that state. This expected payoff equals
the sum of the current payoff plus the expected gain
given making the optimal decision (Figure 1c). Now we
move backwards.
In the antepenultimate period, there are two states

(‘G’ and ‘R’), and in each of these states the organism
can, again, choose to grow or reproduce (decision 2). In
contrast to the penultimate state, optimal decisions are
not obvious in the antepenultimate period; we have to do
some algebra to find the solution.6 It is possible to prove7

that in both antepenultimate states, irrespective of the
values of c and s, the optimal decision is to reproduce.
Hence, we eliminate the ‘growth’ option emanating from
each antepenultimate state (Figure 1d), and assign to
each of these states the expected optimal payoff associ-
ated with having reached that state (Figure 1e).
In the starting state, individuals again face a choice

between growing and reproducing (decision 1). In this
case, the optimal decision cannot be determined inde-
pendently of specific parameter values; i.e. the optimal
decision will depend on the values of c and s. Comparing
the expected values associated with each decision, and
simplifying, shows that organisms should invest in
growth if c(1–c)(s + s2) > 1–c. The right term represents
the benefit of reproducing compared with growing in the
first time period (i.e. only individuals who reproduce
obtain this benefit). The left terms represents the benefit
of growing compared with reproducing in the first time
period. We can decompose the left term as follows.
Individuals who grow in the first period produce

offspring yielding 1–c2, whereas early reproducers garner
1–c for a given offspring. The marginal benefit of
investing one period in growth is thus 1–c2–(1–c),
equaling 1–c2–1 + c, equaling –c2 + c, equaling c(1–c).
Investing in growth in the first period yields this benefit
in the second period (discounted by probability s) and in
the third period (discounted by probability s2).
We set out to analyze how natural selection should

shape reproductive trajectories, depending on parents’
survival probability (s) and juvenile mortality (c). What
can we learn from the expression c(1–c)(s + s2) > 1–c?
One insight is that when expected lifespan is short (i.e.
when extrinsic mortality is high), parents should invest
less in their own growth in order to reproduce earlier.
This result is consistent with the recurring finding that
accelerated maturation correlates with high rates of
extrinsic mortality in many animals, including humans
(Ellis, 2004; Walker et al., 2006). It is also consistent with
research showing that individuals subjectively expecting
a short lifespan discount the future more, focusing
instead on immediate rewards. Based on qualitative
interviews, longitudinal survey data, and existing demo-
graphic analyses, Brezina, Tekin and Topalli (2009)
conclude: ‘young people who perceive a high probability
of early death may have little reason to delay gratifica-
tion for the promise of future benefits, as the future itself
is discounted. Consequently, these young people tend to
pursue high-risk behaviors associated with immediate
rewards, which include crime and violence’ (p. 1091; for
related experimental work, see Griskevicius, Tybur,
Delton & Robertson, 2011).
Our expression c(1–c)(s + s2) > 1–c also yields a

second insight: When juvenile mortality is high, natural
selection more likely favors parents who invest in their
own growth in order to increase offspring viability. This
result becomes apparent when we divide both sides by 1–c,
yielding c(s + s2) > 1. This finding is also intuitive: If
juvenile mortality is high, natural selection favors
parents who reduce this risk. However, even simple
models like this one can raise interesting questions. For
example, our modeling results show that organisms never
reproduce before they grow: if an individual chooses to
grow, she will always do this in the beginning. One might
wonder whether this finding could be linked to the
empirical observation that animals and plants do grow
substantially before they begin reproducing. Of course,
additional work would be needed to know whether this
result generalizes, for instance, when more developmen-
tal periods are included.
We have shown that dynamic optimization can provide

insights into evolved developmental systems. However,
both our current example and our example of static
optimization assume that developmental systems ‘know’

6 A computer solving backwards induction problems would not
determine optimal decision algebraically, as we do here; instead, our
parameters (c and s) would simply be values, and the program would
compute which decision in a given state results in the largest expected
value, store this decision, and move backwards.
7 In the antepenultimate period, when in the ‘growth’ state, individuals
should invest in growth if s(1–c3) > s(1–c2) + 1–c2. To see why this never
obtains, divide both sides by s; deduct one from each side; add c2 to
both sides; multiply both sides by s; taking a c out of the parentheses in
the left term yields: sc(c–c2) > 1–c2. This is never true, because c–c2 > 1–c2

never holds (as c < 1). In the ‘reproduction’ state, individuals should
invest in growth if s(1–c2) > s(1–c) + 1–c. This never obtains either. To
see why, distribute the s’s on both sides; deduct s from both sides; add
sc to both sides; take sc out of parentheses on the left yields: sc(1–c) > 1–c,
which never holds.
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– i.e. embody in their design8 – all the parameter values
relevant to their decisions. For instance, in the current
example, individuals know the value of s when making
their decisions; they do not estimate it – no new
information is acquired during ontogeny. This limitation
is lifted in adaptive dynamic models.

Adaptive dynamic optimization

Adaptive dynamic optimization should be of particular
interest to developmental psychologists, because this
approach can deal with state-dependent systems that
change over time and that can acquire new information
(Mangel & Ludwig, 1992; Houston & McNamara,
1992). For example, a developmental mechanism may
be uncertain about the current state of the environment
(e.g. safe or dangerous). However, it can sample cues to
the environmental state in order to update its (genetically
or epigenetically) inherited prior ‘belief’,9 resulting in a
posterior belief. The changing knowledge state of the
system, like other aspects of the phenotype, can be
represented by state variables.10

We will now discuss an example of adaptive dynamic
optimization. This example incorporates developmental
dynamics, context sensitivity, and information acquisi-
tion, and also incremental construction, another key
emphasis of developmental systems approaches (Oyama
et al., 2001). Our example will, hopefully, demonstrate
how each approach benefits from integrating essential
tenets of the other.

Consider a developing organism that faces the chal-
lenge of constructing an adaptive phenotype in an
environment that remains stable across its lifetime, yet
the parameters of which are not known to it, because

over the course of evolution, its ancestors experienced
different environmental states (Frankenhuis & Pancha-
nathan, 2011a, 2011b; Frankenhuis & Del Giudice,
2012). As a result, the organism’s developmental systems
reflect – in terms of a form–function fit – the prior
probabilities of encountering these environmental states
(McNamara, Green & Olssen, 2006). We also assume
that environmental variation is spatial, not temporal;
within each generation, some fraction of the lineage (say,
50%) develops and reproduces in a safe environment,
and the rest in a dangerous environment. Finally,
because across evolutionary time probabilistic cues
indicating the environmental state were available, organ-
isms evolved perceptual and cognitive abilities for using
these cues to improve their estimates of the environment.

Many biological models have examined the conditions
in which organisms evolve sensitivity to environmental
cues in order to guide development (reviewed in Meyers
& Bull, 2002; Schlichting & Pigliucci, 1998). These
models typically assume a two-stage life history; organ-
isms first sample a cue to the state of the world, and
subsequently develop phenotypes, either instantaneously
(e.g. Moran, 1992) or after a time lag (e.g. Padilla &
Adolph, 1996). As noted by developmental systems
theorists (Oyama et al., 2001), models such as these tend
to leave out that development is typically a constructive
process in which phenotypes incrementally adapt to local
ecologies (for notable exceptions, see Mangel & Clark,
1988; Houston & McNamara, 1999; Schlichting &
Pigliucci, 1998).

The constructive nature of developmental processes is
especially apparent in organisms that start building their
traits during a life stage at which they are not needed yet
(see Gluckman, Hanson, Spencer & Bateson, 2005).
Such ‘anticipatory construction’ may be adaptive when
it takes time to incrementally develop a phenotype, or
when possessing the trait very early in life (e.g. at birth) is
adaptive. For instance, mothers may program their
offspring (e.g. inside the egg or the womb) to start
developing protective armor that will help to reduce
predation risk in the postnatal environment (e.g. Agra-
wal, Laforsch & Tollrian, 1999), fur coats for staying
warm, coloration, wing shapes, and even adaptive
behavior patterns that are adaptive in the postnatal
environment (Gluckman et al., 2005).

When the time allocated to building a phenotype
correlates with the adaptive fit to the environment – such
that the more time invested, the better the fit – organisms
may benefit from starting to specialize earlier in ontog-
eny (Frankenhuis & Panchanathan, 2011a, 2011b). For
instance, children growing up in hostile environments
may tailor their perceptual and mental abilities to
recognizing dangers, perceiving angry facial expressions

8 When we say that organisms ‘know’ the state of the world, we do not
imply pre-specified representations in the developmental system. We
mean that organisms adjust development in a way consistent with them
‘knowing’ the state of the world. For instance, if a lineage evolves in a
predator-rich environment and, as a result, developmental systems are
selected to construct protective armor, these systems are said to
‘assume’ that the world is predator-rich.
9 Again, we are using the language of belief formation metaphorically.
The developmental system is merely predicted to behave ‘as if’ it holds
these beliefs. Optimization models provide computational descriptions,
not cognitive representation or neural implementation (Marr, 1982).
10 There is no limit to the number of state variables except the power
and memory of one’s computer, and thus the method will allow for
multiple domains of uncertainty and associated learning tracks.
However, the ‘curse of dimensionality’ looms large; adding an extra
dimension to a mathematical space will exponentially increase the
volume of this space (Bellman, 1961). Therefore, in practice, dynamic
optimization models will involve a limited set of variables.
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more accurately than other children (Pollak, 2005, 2008),
developing better abilities for deception (Mealey, 1995),
and specializing in behaviors that effectively avoid or
impose harm, such as fighting ability. In contrast,
children growing up in a safe environment may invest
in growth and development (Helle, 2008), acquisition of
skills and knowledge, and constructing long-term coop-
erative networks (Belsky et al., 1991).
If, for a given trait, earlier specialization allows more

time to develop an adaptive phenotype, should develop-
ing organisms start specializing as early as possible?
Despite its benefits, earlier specialization may entail
costs. For instance, earlier specialization implies less time
for assessing the state of the environment, and therefore
a greater risk of developing a phenotype not matching
the environmental state (see Frankenhuis & Panchana-
than, 2011a, 2011b, for further discussion of costs
associated with earlier specialization). Developmental
mismatch may impose major health costs in humans,
including elevated risk of cardiovascular diseases, obes-
ity, and diabetes (Barker, 1994; Monaghan, 2008;
Gluckman et al., 2005).
Thus, specializing early may lead to a more adaptive

phenotype, but sampling more cues likely yields a more
accurate estimate of the environmental state, reducing
the risk of mismatch. How should a given developmental
system optimally tradeoff sampling of environmental
cues and phenotypic specialization, depending on envi-
ronmental conditions? This question combines a focus
on dynamics and contingency with the idea that system
flexibility itself is the product of natural selection. In a
recent paper (Frankenhuis & Panchanathan, 2011a), we
provide a detailed analysis of this problem. We computed
optimal policies using adaptive dynamic optimization for
a range of evolutionary environments. These policies –
which specify the optimal ‘decision’ for each state in
each developmental period – provide insights into the
developmental systems that natural selection might
favor, given particular ecologies.
In our model, we explore such variables as the prior

probabilities of each environmental state – for example,
individuals may be equally likely to be born in either
environmental state, or more likely in one than the other.
We also varied the value of information – cues may be
highly informative about the environmental state, or
weakly informative. And we explored different mapping
functions from specialization to fitness – linear fitness
(the marginal increase in fitness is constant with each
increment towards the environment-appropriate pheno-
type), diminishing fitness (the marginal increase
decreases with each environment-appropriate incre-
ment), and increasing fitness (the marginal increase
increases). Also, we computed distributions of mature

phenotypes (e.g. uniform, bimodal, J-shaped) produced
by the developmental systems, which may provide
insights into the patterning of individual differences in
adulthood.
Our model thus links evolutionary ecologies to devel-

opmental systems, and developmental systems to phe-
notypic distributions. The model generates several novel
insights (Frankenhuis & Panchanathan, 2011a, 2011b).
Here, we mention just one: stochastic sampling can lead
to individual differences in developmental plasticity
itself. Some individuals obtain a homogenous sample
of cues, resulting in a confident estimate about the
environmental state – they specialize early. Other indi-
viduals obtain a heterogeneous, uninformative set of cues
– they continue sampling. As a result, in a given
developmental period, some individuals (the uncertain
ones) may still be sampling while others (the confident
ones) are specializing; the former will thus be more
susceptible to environmental information – they are
more plastic. Accordingly, inter-individual variation in
sensitivity to environmental information may result from
inter-individual variation in the consistency of earlier
experiences.
Adaptive dynamic models have the potential to

advance both theory and empirics. Theoretically, our
model (and other ones) can inspire evolution-oriented
psychologists to explicitly consider developmental
dynamics, context sensitivity, and incremental develop-
mental construction. Empirically, our specific result that
stochastic sampling could lead to individual differences
in plasticity itself will, hopefully, contribute to our
understanding of why children differentially benefit or
suffer from such experiences as nurturance or abuse
(Belsky & Pluess, 2009).

Constructing a dynamic program

This section offers a brief conceptual outline of how
dynamic programs may be implemented. Such a frame-
work may be helpful to researchers who want to develop
their own models as well as to scholars interested in
teaching others. Unfortunately, to our knowledge, no
instruction books about the approach exist for a
psychological audience (providing another motivation
for writing this paper). However, there are many useful
sources describing dynamic programming techniques in
biology (Mangel & Clark, 1988; Houston & McNamara,
1999; Kokko, 2007; Roff, 2010).
Models are by design simplified, idealized versions of

reality. Among their various goals, they may strive to
capture some essential components of a process or
system. Though some models are built for prediction,

© 2013 Blackwell Publishing Ltd.

592 Willem E. Frankenhuis et al.



www.manaraa.com

models may serve many other functions. In the case of
dynamic optimization, models are often used as deduc-
tive aids, forcing us to make assumptions explicit,
ensuring logical consistency in argumentation, and
suggesting new ways of looking at the world, including
normative hypotheses that can be subjected to empirical
tests (Maynard Smith, 1978; Schlichting & Pigliucci,
1998; Staddon, Hinson & Mazur, 1983).

Developing a model first requires formulating a
problem of interest (e.g. How should developing organ-
isms allocate resources to growth vs. reproduction, or
sampling vs. specializing, under tradeoffs?). We use the
dimensions of interest to define the state space of the
system; that is, all possible states of the system at all
times. The developmental system is represented as a
vector of variables, and any given state of the system is
represented by a unique combination of values of the
state variables. The state space can be conceptualized as
a multidimensional matrix, with one axis representing
time (e.g. the x-axis), and other axes representing the
state variables – an N-dimensional matrix situated in
time (with N representing the number of state variables).

We begin by determining the (expected) fitness asso-
ciated with each and every possible end state of
development (Tend, which can represent maturation,
death, or any natural bound given the modeling ques-
tion). How end states translate into payoffs depends on
the fitness function. The fitness function will depend on
the question of interest, and it is often worthwhile
exploring multiple fitness functions. For instance, in our
model of incremental development, we examined how
the optimal balance between sampling and specializing
varied as a function of the mapping of specialization to
fitness (i.e. linear, diminishing, and increasing). In other
cases, pre-existing empirical knowledge may determine
the chosen fitness function. For instance, if it is known
that having some of the trait (e.g. a fur coat) is much
better than having none at all (e.g. no fur), and having
some almost as good as having a lot of the trait (e.g. a
thick fur coat), then the best fitness function will be one
that captures marginally diminishing returns. In general,
fitness functions include all the state variables, and
output one payoff for each end state (e.g. represented as
a column of end states, each with an associated payoff).

After computing the payoffs of end states, we move
one step back in time (backwards induction) to the
penultimate time period (here, Tend – 1). Although no
decisions are made in the final time period – only payoffs
calculated – developmental decisions are being made in
time period Tend – 1. We do this by calculating, for each
penultimate state, which of the available decisions results
in the highest payoff (or ‘expected’ payoff, if outcomes
are probabilistically linked to decisions). The next step

makes backwards induction computationally efficient:
The (expected) payoff associated with the best decision
for a state in time period Tend – 1 now becomes the
(expected) payoff associated with that state in Tend – 1.
This allows us to ignore T-end going forward, with all
suboptimal branches being cut off. We repeat the same
procedure for the previous developmental time period
(Tend – 2), looking forward only to time period Tend – 1.
We continue this process backwards to the beginning of
development (time = 1), and having arrived there, we
have a best decision for each state in the entire state space
(i.e. except states in Tend). The collection of these
decisions is the optimal policy, a manual for optimally
navigating the state space.

In addition to optimal decisions, we might store
second and third best decisions, and so forth. These
suboptimal decisions will be informative if we want to
estimate how strong natural selection needs to be –
compared with other evolutionary processes such as drift
and migration – for the optimal policy to evolve in the
messy world of competing evolutionary forces. This is
one kind of sensitivity analysis. A second kind of
sensitivity analysis is one that explores a wider parameter
range; for instance, if we model a system that samples
cues to the environmental state, we can explore cues
varying from highly to weakly informative. This allows
us to estimate whether optimal developmental policy
holds across a broad or narrow range of parameter
values (a measure of robustness), which will have
implications for the extent to which the results generalize
across circumstances. Sensitivity analyses generally con-
tribute to a better understanding of system dynamics.

Limitations of dynamic optimization

The goal of optimization models is often to explore how
different variables affect each other, sharpening our
intuitions about how, at a qualitative level, processes
might work in nature – although sometimes, the goal
may be to derive quantitative predictions in a specific
ecological context (Maynard Smith, 1978). However, the
models we presented are intended as ‘computational-
level’ models, in Marr’s (1982) sense. They leave open
many parameters of how the policies might be instan-
tiated in the physical materials of which bodies and
brains are made, constraining only the specific compu-
tational properties the models are intended to capture
(Bayesians make a similar argument about their models
of cognition; Tenenbaum, Griffiths & Kemp, 2006).
Optimization models serve as a comparison benchmark
for how systems can be expected to behave if they have
been optimized (Staddon et al., 1983).
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Optimal policies can be thought of as very large
contingency tables (or mathematical functions) which
specify for each state of the system what decision the
organism should make. It is unlikely, however, that
natural systems use such look-up tables. Instead, the
neural networks (or cognitive mechanisms) embodied in
animals, including humans, might use coarse-grained
noisy information to make fast judgments and decisions
(Gigerenzer, Todd & the ABC Research Group, 1999).
This point was nicely captured by McNamara and
Houston (2009), two pioneers of state-dependent
approaches in biology: ‘If this model really was a
description of the world, then the optimal rule could
be implemented by looking up the optimal action to
adopt in each state. However, the world is not as simple
as this or any other model. The number of situations is
too vast to expect the optimal decision for every situation
to evolve. Instead, it is likely that animals will evolve
rules that perform well on average in their natural
environment. These rules might be simple and might not
be exactly optimal in any situation’ (pp. 670–671).
Like any approach, optimization methods have their

limits and caveats (Maynard Smith, 1978). One limita-
tion that applies to optimization models is that they
employ what is called ‘the phenotypic gambit’ (Grafen,
1984), an assumption that optimal phenotypes can be
produced, without considering developmental, genetic,
and other constraints on phenotypic design. In reality,
developmental systems may be intimately tied up with
other systems, with each system affecting the dynamics
of the others (e.g. Finlay, 2007; Finlay, Darlington &
Nicastro, 2001; Maynard Smith, Burian, Kauffman,
Alberch, Campbell, Goodwin, Lande, Raup & Wolpert,
1985; Ploeger et al., 2008). And, because natural
selection only acts on available variation, evolution
cannot produce optimal solutions if those variants have
never arisen. In cases that involve such constraints on
optimality, developmental systems should not be mod-
eled in isolation, but rather as one component of a
cohesive package – i.e. a suite of inter-connected
characters – in which each system might constrain the
other ones (Gould & Lewontin, 1979). Developmental
constraints can be integrated in state-dependent models.
For instance, we can characterize the developmental
system not only in terms of its internal state (e.g. energy
levels) and the state of the external environment (e.g.
resource distributions), but also in terms of its develop-
mental effects on correlated traits (and vice versa).
There is a second way in which dynamic optimization

can teach us about developmental constraints. In
practice, it can be quite difficult to identify developmen-
tal constraints (Andrews, Gangestad & Matthews, 2002;
Maynard Smith et al., 1985). Counter-intuitively, opti-

mization models can facilitate discovery by describing
how a system ought to behave, if unconstrained (Olson,
2012). When a system deviates from predictions, this
could indicate a developmental constraint (or the model
may be mistaken about what selection is maximizing).
Moreover, knowing how a system deviates from opti-
mality can provide insight into the factors likely
constraining it (e.g. tradeoffs resulting from connections
with other systems). Optimization models can thus be
used as a comparison benchmark for the detection of
constraints. As Nettle, Gibson, Lawson and Sear (2013)
note: ‘the use of the term gambit is entirely apt; [it] is a
way of opening the enquiry designed to gain some
advantage in the quest to understand. It is not the end
game (for more detailed discussion, see Fawcett et al.,
2013).
We modeled one form of developmental plasticity

using dynamic programming, but not all forms of
plasticity can be modeled using this approach. Dynamic
programming models can explore a vast number of
developmental trajectories, but each state existed in the
state space before we ran the model, and is thus a
predefined possibility. Since this approach optimizes
only over the initial state space, there is no room for
‘novel environments’. And, since policies are always
found within this pre-specified space, no ‘novel pheno-
types’ can emerge.11 This limitation is important,
because it implies that dynamic programming may be
unsuitable for capturing developmental dynamics as a
source of phenotypic novelty, and resultant evolutionary
change (Lickliter, 2008; Lickliter & Honeycutt, 2003a,
2003c; West-Eberhard, 2003).12

Finally, the method assumes that natural selection has
explored the entire state space, and favored the optimal
policy. This assumption is not always realistic; the extent
to which selection has explored the state space will
depend on a host of factors, including the available
genetic variation, the time selection has had to find
solutions, and the shape of the adaptive landscape (i.e.
adaptive valleys might prevent the system from reaching
an optimal peak).
Although the above features are genuine limitations,

dynamic optimization models are well suited for analyz-

11 Note: It is possible to compute an optimal policy in one environment
and expose it to another environment (e.g. in a simulation) in order to
observe how it fares.
12 These limitations do not necessarily apply to models that use open-
ended learning rules, including models of associative or reinforcement
learning; such models might be more suitable for studying phenotypic
development in evolutionarily novel environments, and the ontogeny of
novel phenotypes (Montague & King-Casas, 2007; Sutton & Barto,
1998).
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ing many important questions at the intersection
between evolutionary and developmental science. There-
fore, in our view, the method deserves to be incorporated
into the toolkit of scholars working in this area.

Concluding remarks

This article has been written with two goals in mind. Our
main goal is to introduce dynamic optimization into
developmental psychology. Dynamic programming is
increasingly being used in many fields of science, and
may prove useful to developmental psychologists as well.
Second, interactions between developmental systems and
evolutionary psychological approaches have sometimes,
unfortunately, been antagonistic. We have outlined one
way in which the gap can be bridged.

Dynamic optimization offers one way of integrating
developmental systems theory’s focus on dynamics and
contingency with the ‘design stance’ of evolutionary
psychology. It provides tools for exploring the properties
of developmental systems that natural selection might
favor, given particular evolutionary ecologies. The
approach allows for stochastic outcomes of decisions,
and can incorporate uncertainty as well as learning
about parameter values. Optimal policies may be found
even in a large developmental state space using back-
wards induction, which involves (1) breaking the deci-
sion problem into temporal sub-problems, (2) finding
optimal solutions for the last sub-problem and recording
them, (3) taking one time step back, and (4) repeating the
procedure to the onset of ontogeny. Because backwards
induction allows pruning of suboptimal branches, it is
computationally more efficient than an exhaustive for-
ward search.

We have focused on adaptive problems spanning
multiple years (e.g. growth–reproduction tradeoffs, sam-
pling vs. specializing), but learning and development also
occur on shorter timescales (e.g. minutes or days), and
here dynamic optimization methods can be applied as
well. For instance, infants face the challenge of learning
which objects in the environment are social agents, and
responsive to them (and to what extent), and which ones
are not (Frankenhuis, Gergely & Watson, 2013).
Research shows that infants actively contribute to this
learning process by producing behaviors (e.g. smiling and
cooing) that elicit responses from social agents around
them (Movellan & Watson, 2002). This form of ‘active
learning’ requires temporal spacing of behavioral units
for other agents to be able to respond and to contrast
this response with background noise. A recent analysis
used adaptive dynamic optimization to examine whether,
at different stages of development, infants’ vocalization

patterns effectively enabled uncertainty reduction about
the question whether a given entity is an agent (Butko &
Movellan, 2010). This analysis highlights the exciting
potential for integrating evolution and learning in the
psychological sciences.

We hope our paper stimulates productive interactions
between evolutionary psychologists and developmental
systems theorists. Human development is highly flexible,
depending on many state-dependent processes. There-
fore, there should be great scope for profitable integra-
tion.
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